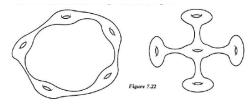
## Mini-curso Topología de Superficies

## Triangulaciones e invariantes

1. ¿Son las superficies figura homeomorfas? Justifica tu respuesta



- 2. Triangula las siguientes superficies y calcula su característica de Euler:
  - a) el cilindro
  - b) la botella de Klein
  - c) el plano proyectivo real  $\mathbb{R}P^2$

  - d) la superficie  $T^2 \# T^2 \# \cdots \# T^2$  orientable estándar de género ge) la superficie  $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \cdots \# \mathbb{R}P^2$  no orientable estándar de género g. g veces
- 3. ¿Cuál es el mínimo número de triángulos necesario para triangular una esfera?
- 4. Dada cualquier triangulación del disco cerrado  $\mathbb{D}^2 = \{z \in \mathbb{C} : |z| \leq 1\}$ , demuestra que

$$\chi := \text{\#V\'ertices} - \text{\#Lados} + \text{\#Tri\'angulos}$$
 es siempre 1

Sugerencia: Pruebe primero que esto es cierto para un sólo triánqulo y proceda por inducción en el número de triángulos. ¿Qué le pasa a la suma alternada χ cuando borras un triángulo?

- 5. Use el resultado anterior para probar que para toda triangulación de la esfera  $S^2$  se tiene que  $\chi = 2$ .
- 6. Los antiguos griegos sabían que hay sólo cinco poliedros regulares: el tetraedro, el cubo, el octaedro, el dodecaedro y el icosaedro. Pruebe este hecho considerando subdivisiones de la espera en n-gonos (con n fija) tal que exactamente m lados se encuentran en cada vértice  $(m, n \ge 3)$ .

Sugerencia: Característica de Euler.

7. Determina si las superficies (a) y (b) ilustradas son o no orientables. Justifica tu respuesta.



- 8. Demuestra que la botella de Klein es no-orientable y la esfera es orientable.
- 9. Demuestra que la suma conexa de una superficie no-orientable con cualquier superficie es una superficie no-orientable.

## CLASIFICACIÓN DE SUPERFICIES

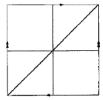
1. Sean A y B espacios homeomorfos al disco cerrado  $\mathbb{D}^2$  tales que se intersecan en sus fronteras a lo largo de arcos. Demuestra que  $A \cup B$  es homemorfo a  $\mathbb{D}^2$ .

Sugerencia: Puedes asumir que cualquier homeomorfismo de la frontera del disco  $\mathbb{D}^2$  en sí mismo puede extenderse a un homeomorfismo del disco  $\mathbb{D}^2$  entero (¿por qué?)

2. Considere una triangulación de una superficie compacta  $\Sigma$  y considere la gráfica G de vértices y aristas de la triangulación. Sea T subgráfica de G que es un árbol. Prueba que T tiene una vecindad o "ensachamiento" que es homeomorfa a  $\mathbb{D}^2$ .

Sugerencia: Hazlo por inducción en el número de vértices del árbol y usa el ejercicio anterior.

3. Las lineas rectas que se muestran en la figura representan tres curvas cerradas simples en la botella de Klein. "Ensancha" cada curva y decide si el resultado es un cilindro o una banda de Möbius. Describe el efecto de hacer cirugía a lo largo de la curva.



- 4. Considere una triangulación de una superficie compacta  $\Sigma$  y considere la gráfica G de vértices y aristas de la triangulación. Sea T un árbol maximal en G y  $\Gamma$  la gráfica dual a T. Demuestre que  $\Gamma$  es una gráfica conexa.
- 5. Prueba el caso (b) de la demostración del teorema de clasificación de superficies que vimos en clase. Sea  $\Sigma$  una superficie compacta y sin frontera con  $\chi(\Sigma) < 2$  y sea  $\gamma$  una curva cerrada simple en  $\Sigma$  que no separa a  $\Sigma$  (es decir  $\Sigma \gamma$  es conexo). Supongamos que el ensanchamiento  $N(\gamma)$  de la curva  $\gamma$  es homeomorfo a una banda de Möbius. Prueba que  $\Sigma$  es homeomorfa a  $\hat{\Sigma}_{\gamma} \# \mathbb{R} P^2$ , donde  $\hat{\Sigma}_{\gamma}$  es la superficie que resulta de tomar  $\Sigma int(N(\gamma))$  y "tapar" la(s) componente(s) frontera con disco(s).
- 6. Demuestra que la superficie ilustrada en la figura es homemorfa a una de las superfices estándares usando el procedimiento de la prueba del Teorema de Clasificación de Superficies.



7. Sean  $\gamma_1$  y  $\gamma_2$  dos curvas cerradas simples en la superficie orientable  $\Sigma_g$  con  $N(\gamma_1)$  y  $N(\gamma_2)$  "ensanchamientos" de éstas. Suponga que las superficies  $\Sigma_g - int(N(\gamma_1))$  y  $\Sigma_g - int(N(\gamma_2))$  son conexas. Prueba que existe un homeomorfismo  $f: \Sigma_g \to \Sigma_g$  tal que  $f(\gamma_1) = \gamma_2$ .

Sugerencia: ¿Qué superfice resulta de cortar  $\Sigma_q$  a lo largo de  $\gamma_i$ ?

Utiliza el Teorema de clasificación de superficies compactas con frontera.