# Topología de superficies

Rita Jiménez Rolland

Instituto de Matemáticas, UNAM-Oaxaca

5-8 de diciembre de 2017

Guadalajara, Jalisco



#### **Temario**

- Espacios topológicos
- Clasificación de Letras
- Clasificación de 1-variedades
- Superficies: definiciones y ejemplos
- Construcción de superficies: pegados y sumas conexas
- El Teorema de Clasificación de Superficies Compactas
- Triangulaciones y característica de Euler
- Gráficas y característica de Euler
- Superficies y característica de Euler
- La prueba de Zeeman
- Orientabilidad
- Otros teoremas de clasificación de superficies
- Homeomorfismos y el grupo modular de superficies

# Clasificación en matemáticas

¿Qué clasificar? Definir los objetos a clasificar

¿Bajo qué criterio? Definir una relación de equivalencia entre objetos

### ¿Qué quiere decir clasificar?

- Dados dos objetos, determinar si están o no relacionados
- Dar una lista completa de representantes de las clases de equivalencia
- Dar un conjunto de <u>invariantes</u> que caractericen completamente una clase de equivalencia dada

# Clasificando espacios métricos

¿Qué clasificar? Espacios métricos  $(X, d_X)$ 

X es un conjunto con una métrica  $d_X: X \times X \to \mathbb{R}_{\geq 0}$ 

### ¿Bajo qué criterio?

Isometría

Dos espacios métricos  $(X, d_X)$  y  $(Y, d_Y)$  son *isométricos* si existe una función  $\phi: X \to Y$  biyectiva, tal que

$$d_Y(\phi(x_1), \phi(x_2)) = d_X(x_1, x_2)$$
 para todo  $x_1, x_2 \in X$ .

Homeomorfismo

Dos espacios métricos  $(X, d_X)$ , $(Y, d_Y)$  son *homeomorfos* si existe una función  $\phi: X \to Y$  biyectiva, continua con inversa continua.

Homeomorfismo = biyección de puntos y abiertos

# Clasificando espacios topológicos

¿Qué clasificar? Espacios topológicos  $(X, \tau_X)$  espacio de Hausdorff / segundo numerable / conexo / compacto

#### ¿Bajo qué criterio? Homeomorfismo

Dos espacios topológicos X y Y son homeomorfos si existe una función  $\phi: X \to Y$  biyectiva, continua con inversa continua. Homeomorfismo = biyección de puntos y abiertos

#### Clasificando letras

¿Qué clasificar? Letras mayúsculas en fuente Sans Serif TEX

# A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z

como subespacios del plano  $\mathbb{R}^2$ 

¿Bajo qué criterio? Homeomorfismo

Dos letras  $L_1, L_2 \subseteq \mathbb{R}^2$  son equivalentes  $L_1 \cong L_2$  (homeomorfas) si existe  $\phi: L_1 \to L_2$  biyectiva, continua con inversa continua.

# CCCICL

**Detalles en:** Rafael López, ¿Cómo un topológo clasifica las letras del alfabeto? MISCELÁNEA MATEMÁTICA **61** (2015) 57–73.

# Encontrando homeomorfismos explícitos

Si creemos que dos letras son homeomorfas: definir a cada letra como un subconjunto concreto de  $\mathbb{R}^2$  y dar un homeomorfismo explícito.

#### Ejemplo:

$$\mathsf{C} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1, x \le 0\}, \quad \mathsf{I} = \{(0,y) \in \mathbb{R}^2 : -1 \le y \le 1\}.$$

Homeomorfismo con inversa 
$$\pi:\mathsf{C}\to\mathsf{I},\ \pi(x,y)=(0,y)$$
  $\pi^{-1}(0,y)=(-\sqrt{1-y^2},y).$ 

# Encontrando homeomorfismos explícitos

Si creemos que dos letras son homeomorfas: definir a cada letra como un subconjunto concreto de  $\mathbb{R}^2$  y dar un homeomorfismo explícito.

### Ejemplo:

$$C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1, x \le 0\}, \quad I = \{(0,y) \in \mathbb{R}^2 : -1 \le y \le 1\}.$$
Homographisms
Con inversa

Homeomorfismo con inversa  $\pi:\mathsf{C}\to\mathsf{I}, \ \pi(x,y)=(0,y)$   $\pi^{-1}(0,y)=(-\sqrt{1-y^2},y).$ 

Obtenemos
seis grupos de letras donde
todas las letras de cada uno
de ellos son homeomorfas
entre sí.

AR CGIJLMNSUVWZ DO EFTY

HK

**Obs.** Dos letras de diferentes grupos puedan ser homeomorfas. ¿Pertenecen la letra I y la letra Y al mismo grupo?

# Letras NO homeomorfas: invariantes topológicos

**invariante topológico:** Propiedad del espacio que se preserva bajo homeomorfismo

 $L_1 \sim L_2$  si existe un invariante topológico que satisfaga  $L_1$  pero NO  $L_2$  **Ejemplos de invariantes:** 

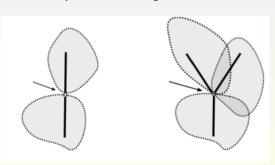
- La conexidad es una invariante topológico:
   Todas las letras son conexas salvo Ñ
- El número de componentes conexas de un espacio topológico.
- Sea  $L \subset \mathbb{R}^2$  y  $p \in L$ . Decimos que p es un punto de intersección de orden  $O(p) = n \in \mathbb{N}$  si el espacio  $L \setminus \{p\}$  tiene exactamente n componentes conexas.
  - Si  $\phi: L_1 \to L_2$  es homemorfismo y  $p \in L_1$ , ent.  $O(\phi(p)) = O(p)$ .

# Invariantes topológicos: componentes conexas

Para  $n \in \mathbb{N}$  tenemos invariantes

$$N(n, L) = card\{p \in L : O(p) = n\}$$

N(n, L) = 0 para casi todo n y  $N(n, L) = \infty$  para ciertos n. El resto de los casos permite distinguir letras en distintas clases



APBO QX

$$N(n, \mathsf{I}) = \left\{ \begin{array}{l} 2 & n = 1 \\ \infty & n = 2 \\ 0 & n \neq 1, 2 \end{array} \right., \quad N(n, \mathsf{Y}) = \left\{ \begin{array}{l} 3 & n = 1 \\ \infty & n = 2 \\ 1 & n = 3 \\ 0 & n \neq 1, 2, 3. \end{array} \right.$$

?خ

# Teorema de clasificación de letras

La clasificación de las letras mayúsculas en la fuente Sans Serif T<sub>E</sub>X, hasta por homeomorfismo, es la siguiente:

```
AR
CIJLMNSUVWZ
     D O
   EFGTY
     НΚ
```

¿Qué clasificar? 1-variedades conexas (todas / sin frontera)

Una 1-variedad M es un espacio topológico Hausdorff y segundo numerable tal que M puede ser cubierto por conjuntos abiertos homeomorfos a  $\mathbb{R}$  o a (0,1]. Si sólo se tienen abiertos homeomorfos a  $\mathbb{R}$  decimos que M es una 1-variedad sin frontera.

¿Bajo qué criterio? Homeomorfismo

#### Ejemplos de 1-variedades:

- La recta real R
- **3** El borde de  $[0, 1] \times [0, 1]$
- El intervalo abierto (0, 1)
- 6 El intervalo semi-abierto (0, 1]

#### Teorema de clasificación de 1-variedades conexas

Existen, hasta por homeomorfismo, exactamente cuatro 1-variedades conexas:

- (a) el círculo S<sup>1</sup>
- (b) la recta real  $\mathbb{R}$
- (c) el intervalo cerrado
- (d) el intervalo semi-abierto

#### Teorema de clasificación de 1-variedades conexas

Existen, hasta por homeomorfismo, exactamente cuatro 1-variedades conexas:

- (a) el círculo S<sup>1</sup>
- (b) la recta real  $\mathbb{R}$
- (c) el intervalo cerrado
- (d) el intervalo semi-abierto

<< Propiedades locales determinan la forma global del espacio>>

#### Invariantes clave:

con frontera / sin frontera compacto / no compacto

#### Teorema de clasificación de 1-variedades conexas

Existen, hasta por homeomorfismo, exactamente cuatro 1-variedades conexas:

- (a) el círculo  $\mathbb{S}^1$  (sin frontera, compacta)
- (b) la recta real  $\mathbb{R}$  (sin frontera, no compacta)
- (c) el intervalo cerrado (con frontera, compacta)
- (d) el intervalo semi-abierto (con frontera, no compacta)

#### Demostración:

Gale, David. *The Teaching of Mathematics: The Classification of* 1-Manifolds: A Take-Home Exam. Amer. Math. Monthly 94 (1987), no. 2, 170–175.

#### 1-variedades conexas sin frontera

#### Teorema de clasificación de 1-variedades conexas sin frontera

Existen, hasta por homeomorfismo, exactamente dos 1-variedades conexas sin frontera:

- (a) el círculo S1 (compacta)
- (b) la recta real  $\mathbb{R}$  (no compacta)

Sea M una 1-variedad sin frontera. A una colección de abiertos que cubren a M, junto con sus homeomorfismos a  $\mathbb R$  (o a (0,1)) se le llama un atlas de M.

Sea

$$\mathcal{A} = \{(\varphi, U) : \varphi : U \rightarrow (0, 1) \text{ es un homeomorfismo}\}$$

un atlas en una 1-variedad M sin frontera.

A cada  $(\varphi, U) \in A$  se le llama una *carta local* de M.

Sean  $(\varphi, U), (\psi, V) \in A$  cartas locales de M.

• Suponga que  $U \cap V \neq \emptyset$  y  $U \setminus V \neq \emptyset$ . Demostrar que si  $\{x_n\}_{n=1}^{\infty}$  es una sucesión en  $U \cap V$  que converge a  $x \in U \setminus V$ , entonces la sucesión  $\{\psi(x_n)\}_{n=1}^{\infty}$  no tiene límite en  $\psi(V)$ .

**Sugerencia:** Usar el hecho de que *M* es un espacio Hausdorff.

② Sea  $I \subset (0,1)$  un subintervalo abierto propio. Llamaremos a I superior si I = (a,1) con 0 < a y diremos que I es inferior si I = (0,b) con b < 1. En ambos casos nos referiremos a I como un intervalo exterior.

Demostrar que I es un intervalo exterior si y sólo si existe una sucesión en I que no converge en (0,1).

**3** Decimos que las cartas  $(\varphi, U)$  y  $(\psi, V)$  se traslapan si  $U \cap V \neq \emptyset$ ,  $U \setminus V \neq \emptyset$  y  $V \setminus U \neq \emptyset$ . Suponga que  $(\varphi, U)$  y  $(\psi, V)$  se traslapan y sea W una componente conexa de  $U \cap V$ . Demostrar que  $\varphi(W)$  y  $\psi(W)$  son intervalos exteriores.

**Sugerencia:** Mostrar primero que  $\varphi(W)$  es un subintervalo propio de  $\varphi(U)=(0,1)$ . Usando el paso (1) o el hecho de que las 1-variedades sin frontera son localmente conexas, demostrar que  $\varphi(W)$  es un intervalo abierto. Por un argumento simétrico se sigue que  $\psi(W)$  es un intervalo abierto. Usando la caracterización de (2), construir una sucesión apropiada en  $\varphi(W)$  y use (1) para demostrar que  $\psi(W)$  es exterior. Concluir que  $\varphi(W)$  también es exterior.

• Use el paso (3) para concluir que  $U \cap V$  tiene a lo más dos componentes conexas para cualesquiera dos cartas  $(\varphi, U)$  y  $(\psi, V)$ .

- Suponga que M es conexa y que  $U \cap V$  tienen dos componentes conexas. Demostrar que M es homeomorfo a  $S^1$ . Sugerencia:
  - i. Sean  $W_0$  y  $W_1$  las componentes conexas de  $U \cap V$ . Entonces  $(\varphi, U)$  y  $(\psi, V)$  se traslapan y podemos asumir que  $\varphi(W_0) = (0, a), \varphi(W_1) = (a', 1), \psi(W_0) = (0, b), \psi(W_1) = (b', 1).$
  - ii. Sea S el borde de  $[0,1] \times [0,1]$ . Defina  $f:[0,1] \to S$  como una función lineal a pedazos dada por

$$f(0) = (0,0), f(a) = (1,0), f(a') = (1,1), f(1) = (0,1).$$

Defina  $g:[b,b'] \to S$  como una función lineal tal que

$$g(b) = (0,0), g(b') = (0,1).$$

Finalmente, defina  $\eta: U \cup V \to S$  por  $\eta(x) = \begin{cases} f \circ \phi(x) & x \in U \\ g \circ \psi(x) & x \in V \setminus U \end{cases}$ . Demostrar que  $\eta$  es un homeomorfismo de  $U \cup V$  y S.

iii. Usar (ii) para demostrar que  $U \cup esV$  es compacto. Usando la conexidad de M concluir que  $\eta$  es un homeomorfismo de M y S.

⑤ Suponga que  $(\varphi, U)$  y  $(\psi, V)$  se traslapan y que  $U \cap V$  es conexo. Demuestrar que  $U \cap V$  es homeomorfo a (0, 1).

**Sugerencia:** Sea  $W=U\cap V$ . Argumente porqué se puede asumir que  $\varphi(W)$  y  $\psi(W)$  son intervalos superiores. Sea  $\psi(W)=(b,1)$ . Defina  $\eta:U\cup V\to (0,1)$  por

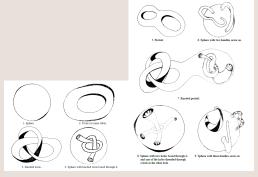
$$\eta(x) = \begin{cases} \phi(x) & x \in U \\ 1 + b - \psi(x) & x \in V \setminus U. \end{cases}$$

Suponga que M es conexa y no compacta. Usar el hecho de que M es segundo numerable para demostrar que M es homeomorfa a (0,1).

**Sugerencia:** Considerar un atlas  $\mathcal{A} = \{(\varphi_i, U_i)\}$  contable de M. Definir una sucesión  $(V_i)$  anidada de abiertos de manera inductiva:  $V_1 = U_1$  y  $V_{n+1} = V_n \cup U_k$  donde k es el menor suíndice tal que  $U_k$  intersecta  $V_n$ . Demuestre que  $\bigcup_{n=1}^{\infty} V_n = \bigcup_{n=1}^{\infty} U_n = M$ . Definir homemomorfimos  $\psi_n : V_n \to (0, 1)$  de manera inductiva, empezando por  $\psi_1 = \varphi_1$ .

# Clasificando 2-variedades conexas = superficies

¿Qué clasificar? 2-variedades conexas = superficies (todas / compactas / compactas sin frontera)



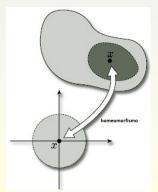
¿Bajo qué criterio? Homeomorfismo



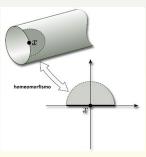
# Definición de superficie

Una **2-variedad** o **superficie**  $\Sigma$  es una espacio topológico Hausdorff, conexo y segundo numerable donde para todo  $x \in \Sigma$  existe un entorno abierto  $U \subset \Sigma$  de x tal que

U es homeomorfo a un disco abierto en  $\mathbb{R}^2$ 



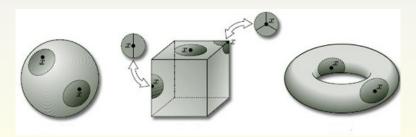
U es homeomorfo a un semidisco abierto en  $\mathbb{R}^2$ 



x es un *punto de la frontera de*  $\Sigma$ .

# Ejemplos de superficies

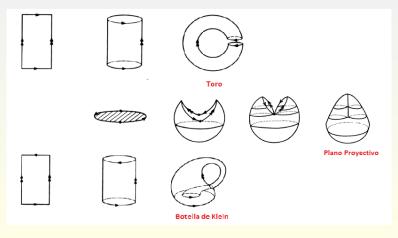
- El plano  $\mathbb{R}^2$
- ② El semiplano  $\{(x,y) \in \mathbb{R}^2 : y \geq 0\}$
- $\odot$  El cuadrado  $[0,1] \times [0,1]$
- **4** El disco abierto  $D = \{z \in \mathbb{C} : |z| < 1\}$
- **3** El disco cerrado  $\overline{D} = \{z \in \mathbb{C} : |z| \le 1\}$



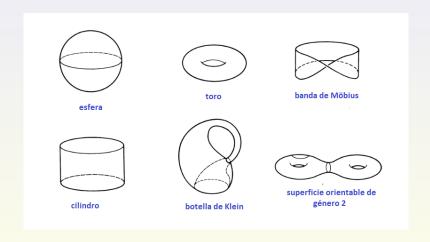
# Construcción de superficies: polígonos y pegados

P un polígono (subespacio de  $\mathbb{R}^2$ )  $\sim$  identifica lados del polígono P

#### **Superficie compacta:** $P/\sim$ con la topología cociente

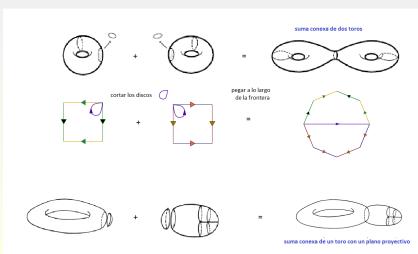


# Ejemplos de superficies



# Más superficies: sumas conexas

$$\Sigma_1 \# \Sigma_2 = \frac{\Sigma_1 \setminus \mathsf{int}(\mathit{D}_1) \bigsqcup \Sigma_2 \setminus \mathsf{int}(\mathit{D}_2)}{\sim}$$



# Teorema de clasificación de superficies cerradas

**Teorema.** Toda superficie cerrada  $\Sigma$  (compacta y sin frontera) es homeomorfa a la esfera o a una suma conexa de un número finito de toros con planos proyectivos:

$$\Sigma \cong S^2 \# T \# \cdots \# T \# \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$$



# Clasificación de superficies: breve historia

Beauty is the first test: there is no permanent place in the world for ugly mathematics.

G.H. HARDY

- LISTING (1802-1882) Palabra "topologie" (1847); banda de Möbius
- RIEMANN (1826-1866) Reconoció la importanciade la topología en su trabajo de variable compleja; noción de superficie simplemente conexa
- MÖBIUS (1790-1868) Primer enunciado del Teorema de clasificación de superficies (1863); género y orientabilidad de una superficie; banda de Möbius
- JORDAN (1838-1922) Enunciado del Teorema de clasificación para superficies orientables (1866); nociones de homeomorfismo y género
- DYCK (1856-1934) Enuncia Teorema de clasificación para superficies orientables y no orientables (1888); invariantes: característica de Euler, # curvas frontera, orientabilidad; noción de superficie normal

# Clasificación de superficies: breve historia

- DEHN(1878-1952)—HEEGARD(1871-1948) Primer enunciado riguroso del Teorema de clasificación de superficies (1907)
- BRAHANA (1895-1972) Primera prueba completa del Teorema de clasificación de superficies triangulables (1921)
- RADÓ (1895-1965) Toda superficie compacta es triangulable (1925)

FUENTE: J. Gallier and D. Xu, A guide to the classification theorem for compact surfaces GEOMETRY AND COMPUTING Volume 9, Springer (2013)

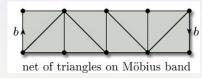
#### La prueba que veremos:

ZEEMAN (1966) An Introduction to Topology: The Classification theorem for Surfaces, Mathematics Institute University of Warwick Coventry

M. A. ARMSTRONG, Basic Topology, Springer Undergraduate texts in mathemathics

# Triangulaciones

Triangulaciones: herramienta para clasificar y calcular



Idea: "cortar" espacios en subespacios más sencillos (triángulos)

Sean  $v_0, v_1, v_2 \in \mathbb{R}^k$  en posición general:

0-simplejo / vértice  $v_0$ 

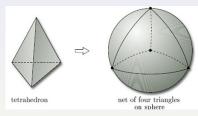
1-simplejo / lado  $\{t_0v_0 + t_1v_1 : t_0, t_1 \ge 0, t_0 + t_1 = 1\}$ 

2-simplejo / triángulo  $\{t_0v_0 + t_1v_1 + t_2v_2 : t_0, t_1, t_2 \ge 0, t_0 + t_1 + t_2 = 1\}$ 

Complejo simplicial de dimensión 2: colección K de simplejos, incluye todas las caras y las intersecciones entre dos simplejos en K ocurren en una cara común.

|K|: considerar al poliedro K como subespacio topológico de  $\mathbb{R}^k$ .

# Triangulaciones

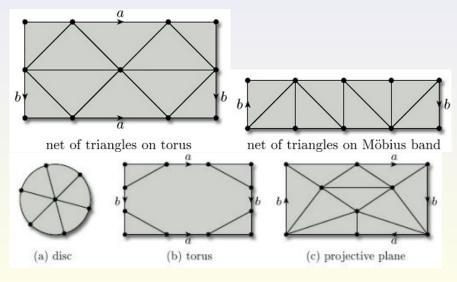


Una **triangulación** de una superficie  $\Sigma$ : un complejo simplicial K y un homeomorfismo  $h: |K| \to \Sigma$ .

#### Propiedades:

- (i) Todo par de vértices en K puede conectarse por un camino de lados
- (ii) Cualquier lado es cara de exactamente dos triángulos (uno si la superficie tiene frontera)
- (iii) Un vértice v es el vértice de por lo menos tres triángulos y todos los triángulos que tienen a v como vértice se acomodan en círculo.

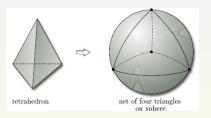
# Ejemplos de triangulaciones



Teorema (Radó 1920s) Toda superficie compacta es triangulable.

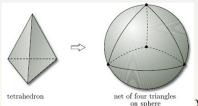
Característica de Euler: Sea  $h: |K| \to \Sigma$  una triangulación de una superficie  $\Sigma$  compacta

$$\chi(\Sigma) = \# \text{v\'ertices} - \# \text{lados} + \# \text{tri\'engulos}$$

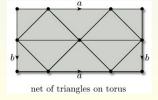


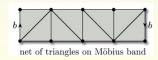
Característica de Euler: Sea  $h: |K| \to \Sigma$  una triangulación de una superficie  $\Sigma$  compacta

$$\chi(\Sigma) = \# \text{v\'ertices} - \# \text{lados} + \# \text{tri\'engulos}$$



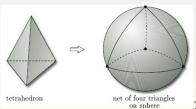
$$\chi(S^2) = 4 - 6 + 4 = 2$$



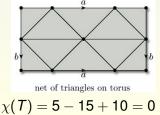


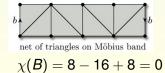
Característica de Euler: Sea  $h: |K| \to \Sigma$  una triangulación de una superficie  $\Sigma$  compacta

$$\chi(\Sigma) = \# \text{v\'ertices} - \# \text{lados} + \# \text{tri\'engulos}$$



$$\chi(S^2) = 4 - 6 + 4 = 2$$





**Teorema.** La característica de Euler es independiente de la triangulación.

Prueba: subdivisión baricéntrica.

**Teorema.** La característica de Euler es un invariante de homeomorfismo.

Prueba: Homología

Proposición. 
$$\chi(\Sigma_1 \# \Sigma_2) = \chi(\Sigma_1) + \chi(\Sigma_2) - 2$$

$$\chi(T^2 \# T^2) = ?$$

$$\chi(S^2 \# T^2) = ?$$

$$\chi(\mathbb{R}P^2\#\mathbb{R}P^2)=?$$

# Caracterísitica de Euler de gráficas

Para Γ una gráfica finita

$$\chi(\Gamma) = \text{v\'ertices} - \text{lados}$$

Γ es un árbol si no tiene ciclos

Lema (Característica de Euler de gráficas). Sea  $\Gamma$  una gráfica conexa finita. Entonces

- a)  $\chi(\Gamma) \leq 1$
- b)  $\chi(\Gamma) = 1$  si y sólo si  $\Gamma$  es un árbol.

## Característica de Euler de superficies

Lema (Característica de Euler de superficies). Sea  $\Sigma$  una superfice cerrada, entonces

- a)  $\chi(\Sigma) \leq 2$
- b)  $\chi(\Sigma)=2$  si y sólo si  $\Sigma$  es homeomorfa a  $S^2$
- c) Si  $\chi(\Sigma)$  < 2, entonces existe un curva cerrada simple en  $\Sigma$  que NO separa a la superficie.

*Curva cerrada simple*: imagen de un encaje  $\gamma: S^1 \hookrightarrow \Sigma$ 

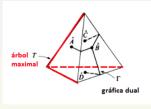
**Teorema de la curva de Jordan.** Toda curva cerrada simple del plano divide al plano en dos componentes conexas disjuntas que tienen a la curva como frontera comn. Una de estas componentes est acotada (el interior de la curva) y la otra es no acotada y se le llama exterior.

Escoger triangulación de  $\Sigma$  con  $\nu$  vértices, I aristas y t triángulos.

G: vértices y lados de la triangulación

T: un árbol maximal de G

Definimos  $\Gamma$  la **gráfica dual** de T:



 $V(\Gamma)$  = Triángulos de la triangulación  $E(\Gamma)$ = Aristas de la gráfica dual Dos vértices  $v_1, v_2 \in V(\Gamma)$  se unen por una arista en  $E(\Gamma)$  si los triángulos correspondientes a  $v_1$  y  $v_2$  comparten un lado que no está en T.

Ejercicio: Γ es una gráfica conexa.

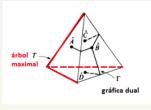
$$|V(T)| = v$$
  $|V(\Gamma)| = t$   $|E(\Gamma)| + |E(T)| = I$ 

Escoger triangulación de  $\Sigma$  con  $\nu$  vértices, I aristas y t triángulos.

G: vértices y lados de la triangulación

T: un árbol maximal de G

Definimos  $\Gamma$  la **gráfica dual** de T:



 $V(\Gamma)$  = Triángulos de la triangulación  $E(\Gamma)$ = Aristas de la gráfica dual Dos vértices  $v_1, v_2 \in V(\Gamma)$  se unen por una arista en  $E(\Gamma)$  si los triángulos correspondientes a  $v_1$  y  $v_2$  comparten un lado que no está en T.

Ejercicio: Γ es una gráfica conexa.

$$|V(T)| = v$$
  $|V(\Gamma)| = t$   $|E(\Gamma)| + |E(T)| = t$ 

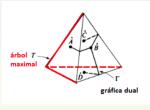
(a) 
$$\chi(\Sigma) = \chi(T) + \chi(\Gamma) \le 1 + 1 = 2$$

Escoger triangulación de  $\Sigma$  con  $\nu$  vértices, I aristas y t triángulos.

G: vértices y lados de la triangulación

T: un árbol maximal de G

Definimos  $\Gamma$  la **gráfica dual** de T:



 $V(\Gamma)$  = Triángulos de la triangulación  $E(\Gamma)$ = Aristas de la gráfica dual Dos vértices  $v_1, v_2 \in V(\Gamma)$  se unen por una arista en  $E(\Gamma)$  si los triángulos correspondientes a  $v_1$  y  $v_2$  comparten un lado que no está en T.

Ejercicio: Γ es una gráfica conexa.

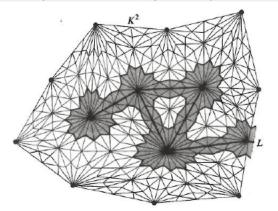
$$|V(T)| = v$$
  $|V(\Gamma)| = t$   $|E(\Gamma)| + |E(T)| = t$ 

(a) 
$$\chi(\Sigma) = \chi(T) + \chi(\Gamma) \le 1 + 1 = 2$$

(b)  $\chi(\Sigma) = \chi(T) + \chi(\Gamma) = 2$  si y sólo si  $\chi(\Gamma) = 1$  si y sólo si  $\Gamma$  es árbol.

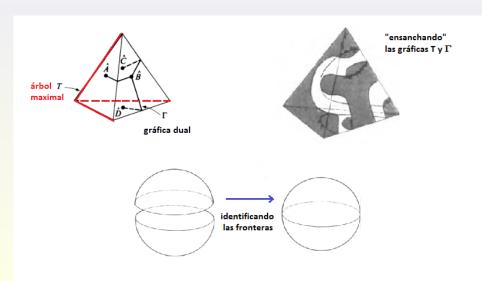
# "Ensanchamientos" de subgráficas o caminos

Si *L* es una subgráfica de la triangulación podemos "ensancharla"



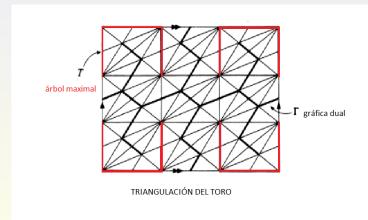
- El "ensanchamiento" de un árbol es homeomorfo a un disco  $\mathbb{D}^2$ .
- El "ensanchamiento" de un camino poligonal cerrado y simple (sin autointersecciones) es homeomorfo al cilindro o a la banda de Möbius.

(b)  $\chi(\Sigma) = \chi(T) + \chi(\Gamma) = 2$  si y sólo si  $\chi(\Gamma) = 1$  si y sólo si  $\Gamma$  es árbol.



## Característica de Euler de superficies

(c)  $\chi(\Sigma) = \chi(T) + \chi(\Gamma) < 2$ , entonces  $\Gamma$  es una gráfica con ciclos.



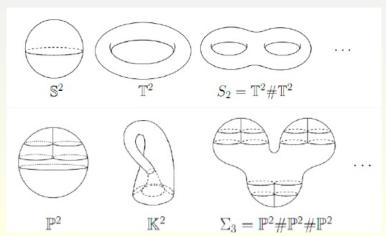
Entonces existe un encaje  $\gamma: S^1 \hookrightarrow \Gamma \subseteq \Sigma$  (el ciclo) Demostrar que  $\Sigma - \gamma$  es conexa.



# Teorema de clasificación de superficies cerradas

**Teorema.** Toda superficie cerrada  $\Sigma$  (compacta y sin frontera) es homeomorfa a la esfera o a una suma conexa de un número finito de toros con planos proyectivos:

$$\Sigma \cong S^2 \# T \# \cdots \# T \# \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$$



### La prueba se Zeeman

Prueba por inducción en la característica de Euler  $\chi(\Sigma) \le 2$ 

Base de inducción:  $\chi(\Sigma)=2$  si y sólo si  $\Sigma$  es homeomorfa a  $S^2$ 

**Hipótesis de inducción:** Sea Σ superficie cerrada, con  $\chi(\Sigma)$  < 2. Si Σ' es superficie y  $\chi(\Sigma') > \chi(\Sigma)$ , entonces

 $\Sigma'\cong\mbox{ suma conexa de toros y planos proyectivos}$ 

Por Lema (b):

existe un curva  $\gamma$  cerrada simple en  $\Sigma$  que NO separa la superficie

 $N(\gamma)$ = "Ensanchamiento" de  $\gamma$ :

- (a)  $N(\gamma)$  es homeomorfo a un cilindro,
- (b)  $N(\gamma)$  es homemorfo a una banda de Möbius

Hagamos "cirugía" en la superficie:

"cortar pedazos de la superficie y reemplazarlos por otros"

## La prueba de Zeeman. Caso (a)

 $N(\gamma)$  es homeomorfo al interior de un cilindro

Cortar:  $\Sigma_{\gamma} := \Sigma - int(N(\gamma))$ 

es una superficie conexa con dos componentes frontera

### Reemplazar:

 $\hat{\Sigma}_{\gamma} := \Sigma_{\gamma}$  + Discos que "tapan" las dos componentes frontera

## La prueba de Zeeman. Caso (a)

 $N(\gamma)$  es homeomorfo al interior de un cilindro

Cortar: 
$$\Sigma_{\gamma} := \Sigma - int(N(\gamma))$$

es una superficie conexa con dos componentes frontera

#### Reemplazar:

 $\hat{\Sigma}_{\gamma} := \Sigma_{\gamma}$  + Discos que "tapan" las dos componentes frontera

Luego,  $\chi(\hat{\Sigma}_{\gamma}) > \chi(\Sigma)$  y por hipótesis de inducción

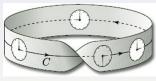
 $\Sigma \cong T^2 \#$  suma conexa de toros y planos proyectivos

Caso (b):  $\Sigma \cong \mathbb{R}P^2\#$  suma conexa de toros y proyectivos

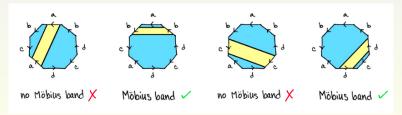


### Orientabilidad





Una superficie que NO contiene una banda de Möbius es **orientable** Una superficie que SÍ contiene una banda de Möbius es **no orientable** 

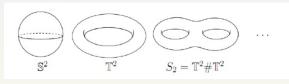


Ser orientable o no orientable es un invariante de homeomorfismo.

## Teorema de clasificación de superficies cerradas

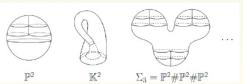
Sea  $\Sigma$  una superficie cerrada (compacta y sin frontera). Entonces  $\Sigma$  es homeomorfa a una y sólo una de las siguientes superficies:

- La esfera si  $\chi(\Sigma) = 2$
- Una suma conexa de g toros si  $\Sigma$  es orientable



$$g = 1 - \chi(\Sigma)/2$$

ullet Una suma conexa de h planos proyectivos si  $\Sigma$  es no orientable



$$h = 2 - \chi(\Sigma)$$

característica de Euler + orientabilidad: invariantes completos. grupo fundamental: tenemos representantes de clases distintas

### Otros teoremas de clasificación

- Clasificación de superficies orientables con frontera. Toda superficie compacta orientable es homeomorfa a  $\Sigma_{g,r}$  para ciertos  $g,r\geq 0$ .
- Clasificación de superficies compactas.
   Dos superficies compactas son homeomorfas si y sólo si tienen el mismo número de componentes frontera, la misma característica de Euler y son ambas orientables o ambas no orientables.
- Clasificación de superficies triangulables no compactas.
- Descomposición prima de 3-variedades compactas orientables
- Conjetura de Poincaré (1904): Si una 3-variedad compacta M tiene la propiedad de que toda curva cerrada simple puede deformarse continuamente a un punto, entonces M es homeomorfa a la esfera S<sup>3</sup>.

## Homemorfismos de superficies

### "las simetrías de las superficies"

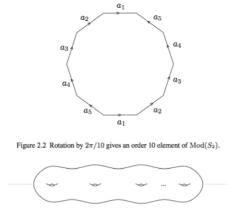


Figure 2.3 The rotation by  $\pi$  about the indicated axis is a hyperelliptic involution.



Figure 2.1 An order 5 element of  $Mod(S_5)$ .

### Grupos de homeomorfismos:

 $(\mathsf{Homeo}(\Sigma) = \{f : \Sigma \to \Sigma : f \text{ es homeomorfismo}\}, \mathsf{composición})$ 

# Grupos modulares de superficies

$$\textit{Mod}(\Sigma) = \mathsf{Homeo}^+(\Sigma)/\mathsf{Homeo}^+_0(\Sigma)$$

¿Son estos grupo conocido? ¿Lo hemos visto en otros conextos?

## Grupos modulares de superficies

$$\textit{Mod}(\Sigma) = \mathsf{Homeo}^+(\Sigma)/\mathsf{Homeo}^+_0(\Sigma)$$

¿Son estos grupo conocido? ¿Lo hemos visto en otros conextos?

$$\mathit{Mod}(\mathbb{D}_2) = \{\mathit{e}\}$$

 $Mod(\Sigma_{0,1}^n)$ = grupo de trenzas

$$Mod(\Sigma_{0,2}) = \mathbb{Z}$$

$$Mod(T) = SL(2, \mathbb{Z})$$

Son discretos, numerables, finitamente generados y presentados

## Grupos modulares de superficies

$$\textit{Mod}(\Sigma) = \mathsf{Homeo}^+(\Sigma)/\mathsf{Homeo}^+_0(\Sigma)$$

¿Son estos grupo conocido? ¿Lo hemos visto en otros conextos?

$$Mod(\mathbb{D}_2) = \{e\}$$

 $Mod(\Sigma_{0,1}^n)$ = grupo de trenzas

$$Mod(\Sigma_{0,2}) = \mathbb{Z}$$

$$Mod(T) = SL(2, \mathbb{Z})$$

Son discretos, numerables, finitamente generados y presentados

#### Pregunta abierta:

¿Es  $Mod(\Sigma)$  lineal (un grupo de matrices) cuando el género de  $\Sigma$  es mayor que 2?

#### Referencias

- Rafael López, ¿Como un topológo clasifica las letras del alfabeto?
   MISCELÁNEA MATEMÁTICA 61 (2015)
- D. Gale, The Classification of 1-Manifolds: A Take-Home Exam, The American Mathematical Monthly, Vol. 94, No. 2 (1987)
- E.C. Zeeman, An Introduction to Topology: The Classification theorem for Surfaces, Mathematics Institute University of Warwick Coventry (1966)
- M. A. Armstrong, Basic Topology Undergraduate Texts in Mathematics, Springer
- P. Andrews, The Classification of Surfaces, The American Mathematical Monthly, Vol. 95, No. 9 (1988)
- A. Putman, A quick proof of the classification of surfaces http://www.math.rice.edu/ andyp/notes/ClassificationSurfaces.pdf
- J. Gallier and D. Xu, A guide to the classification theorem for compact surfaces, Geometry and Computing Volume 9, Springer (2013)
- Surfaces. Notes on The Open University.
- A. Hatcher, The Kirby torus trick for surfaces, preprint 2013, arXiv:1312.3518

### Más Referencias

- I. Richards, On the classification of Noncompact Surfaces, Transactions of the A.M.S. (1963). p. 259–269.
- J. Milnor, Towards the Poincaré Conjecture and the Classification of 3-Manifolds, Notices A.M.S. (November 2003) 1226–1233.
- A. Hatcher, Notes on Basic 3-Manifold Topology. https://www.math.cornell.edu/ hatcher/3M/3M.pdf
- J. R. Munkres. Topology: a first course. Prentice-Hall, Inc. 1975.
- A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
- B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series.
- Y. Minsky, A brief introduction to mapping class groups, Moduli spaces of Riemann Surfaces, 5-44, IAS/Park City Math. Ser., 20. Amer. Math. Soc. (2013).
- Office hours with a geometric group theorist, Princeton University Press (2017).
   Edited by Matt Clay & Dan Margalit

### El "comercial"

Instituto de Matemáticas, Unidad Oaxaca



https://paginas.matem.unam.mx/oaxaca/

Posibles becas para tesis de licenciatura y de maestría rita@im.unam.mx